skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McKinney, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we expand the set of known layered compounds to include ionic layered materials, which are well known for superconducting, thermoelectric, and battery applications. Focusing on known ternary compounds from the ICSD, we screen for ionic layered structures by expanding upon our previously developed algorithm for identification of van der Waals (vdW) layered structures, thus identifying over 1500 ionic layered compounds. Since vdW layered structures can be chemically mutated to form ionic layered structures, we have developed a methodology to structurally link binary vdW to ternary ionic layered materials. We perform an in-depth analysis of similarities and differences between these two classes of layered systems and assess the interplay between layer geometry and bond strength with a study of the elastic anisotropy. We observe a rich variety of anisotropic behavior in which the layering direction alone is not a simple predictor of elastic anisotropy. Our results enable discovery of new layered materials through intercalation or de-intercalation of vdW or ionic layered systems, respectively, as well as lay the groundwork for studies of anisotropic transport phenomena such as sound propagation or lattice thermal conductivity. 
    more » « less
  2. High-throughput calculations (first-principles density functional theory and semi-empirical transport models) have the potential to guide the discovery of new thermoelectric materials. Herein we have computationally assessed the potential for thermoelectric performance of 145 complex Zintl pnictides. Of the 145 Zintl compounds assessed, 17% show promising n-type transport properties, compared with only 6% showing promising p-type transport. We predict that n-type Zintl compounds should exhibit high mobility μ n while maintaining the low thermal conductivity κ L typical of Zintl phases. Thus, not only do candidate n-type Zintls outnumber their p-type counterparts, but they may also exhibit improved thermoelectric performance. From the computational search, we have selected n-type KAlSb 4 as a promising thermoelectric material. Synthesis and characterization of polycrystalline KAlSb 4 reveals non-degenerate n-type transport. With Ba substitution, the carrier concentration is tuned between 10 18 and 10 19 e − cm −3 with a maximum Ba solubility of 0.7% on the K site. High temperature transport measurements confirm a high μ n (50 cm 2 V −1 s −1 ) coupled with a near minimum κ L (0.5 W m −1 K −1 ) at 370 °C. Together, these properties yield a zT of 0.7 at 370 °C for the composition K 0.99 Ba 0.01 AlSb 4 . Based on the theoretical predictions and subsequent experimental validation, we find significant motivation for the exploration of n-type thermoelectric performance in other Zintl pnictides. 
    more » « less